由于五角星的頂角是36度,這樣也可以得出黃金分割的數(shù)值為2Sin18 。
黃金分割點約等于0.618:1
是指分一線段為兩部分,使得原來線段的長跟較長的那部分的比為黃金分割的點。線段上有兩個這樣的點。
利用線段上的兩黃金分割點,可作出正五角星,正五邊形。
2000多年前,古希臘雅典學派的第三大算學家歐道克薩斯首先提出黃金分割。所謂黃金分割,指的是把長為L的線段分為兩部分,使其中一部分對于全部之比,等于另一部分對于該部分之比。而計算黃金分割最簡單的方法,是計算斐波契數(shù)列1,1,2,3,5,8,13,21,。。.后二數(shù)之比2/3,3/5,4/8,8/13,13/21,。。.近似值的。
黃金分割在文藝復興前后,經(jīng)過阿拉伯人傳入歐洲,受到了歐洲人的歡迎,他們稱之為“金法”,17世紀歐洲的一位數(shù)學家,甚至稱它為“各種算法中最可寶貴的算法”。這種算法在印度稱之為“三率法”或“三數(shù)法則”,也就是我們現(xiàn)在常說的比例方法。
其實有關“黃金分割”,我國也有記載。雖然沒有古希臘的早,但它是我國古代數(shù)學家獨立創(chuàng)造的,后來傳入了印度。經(jīng)考證。歐洲的比例算法是源于我國而經(jīng)過印度由阿拉伯傳入歐洲的,而不是直接從古希臘傳入的。
因為它在造型藝術中具有美學價值,在工藝美術和日用品的長寬設計中,采用這一比值能夠引起人們的美感,在實際生活中的應用也非常廣泛,建筑物中某些線段的比就科學采用了黃金分割,舞臺上的報幕員并不是站在舞臺的正中央,而是偏在臺上一側,以站在舞臺長度的黃金分割點的位置最美觀,聲音傳播的最好。就連植物界也有采用黃金分割的地方,如果從一棵嫩枝的頂端向下看,就會看到葉子是按照黃金分割的規(guī)律排列著的。在很多科學實驗中,選取方案常用一種0.618法,即優(yōu)選法,它可以使我們合理地安排較少的試驗次數(shù)找到合理的西方和合適的工藝條件。正因為它在建筑、文藝、工農(nóng)業(yè)生產(chǎn)和科學實驗中有著廣泛而重要的應用,所以人們才珍貴地稱它為“黃金分割”。
(南方財富網(wǎng)SOUTHMONEY.COM)